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Lewis Research Center

SUMMARY

This report presents the program called DRC. It is an automatic computer
program in the FORTRAN language for the calculation of transition amplitudes and
cross sections on the basis of the distorted-wave Born approximation (DWBA).

The incident- and the outgoing-channel wave functions used in the DWBA are de-
scriptive of elastic scattering by an optical potential. DRC may be used to
calculate the differential cross section for elastic scattering in both incident
and outgoing channels. The following types of nuclear reactions can be treated
by DRC: (1) inelastic scattering, (2) knock-out, (3) projectile stripping, and
(4) target stripping.

INTRODUCTION

This report presents the program called DRC (direct reaction calculation).
It is an auvtomatic computer program in the FORTRAN language for the calculation
of transition amplitudes and cross sections on the basis of the distorted-wave
Born approximation (DWBA). The incident- and the outgoing-channel wave functions
used in the DWBA are descriptive of elastic scattering by an optical potential.
DRC may be used to calculate the differential cross section for elastic scatter-
ing in both incident and outgoing channels. The following types of nuclear re-
actions can be treated by DRC on the basis of the zero-range interaction approx-
imation: (1) inelastic scattering, (2) knock-out, (3) projectile stripping, and
(4) target stripping. TFor inelastic scattering there are two alternatives to
the zero-range interaction approximation. The three inelastic scattering options
are (1) single-particle excitation via a zero-range interaction, (2) single-
particle excitation via a Yukawa interaction, and (3) collective excitation via
a diffuse surface interaction.

BASTIC MATHEMATICAL EQUATIONS
The DWBA formalism on which DRC is based will now be outlined. Iet D be

the incident particle, I +the target nucleus, P the outgoing particle, and F
the residual nucleus (sketch a).

Incident channel ————®—> _—— *—@— —_—— —

Outgeing channel —_——— —— e e e e — -——



According to the DWBA, the transition amplitude for this process is
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where @ég)(ﬁ) 1s the wave function for the relative motion of particles

A and_ B when the interaction between the two particles is the optical poten-
tial V,, (ref. 1). When the superscript is +(-), the incoming (outgoing) part

of ¢AB(K) is asymptotically equal to the incoming (outgoing) part of

exp 1K ° (;A - ?B). When expanded in spherical harmonics,
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The equation for Q(_) is obtained by replacing f%B by its complex conjugate.
The wave function for the internal degrees of freedom of particle A is Pps
while VPF is the potential energy of interaction of particles P and F.

For inelastic scattering reactions P =D and F = I. When single-
particle excitation is involved, I = C+ N=F where C 1is the core and N 1is
the bound particle. The transition amplitude is then
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and where

(jljzmlm2|jlszM) vector addition coefficient

W(abde; cf ) Racah coefficient

Pr(x) assoclated Legendre polynomial
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The form of gx(r) depends on which option is chosen for the ilnelastic scatter-
ing interaction. If
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and where

In(x) spherical Bessel function
h{l)(x) spherical Hankel function of first kind
MA mass of A

The expressions corresponding to Inelastic scattering by collective excita-

tion are similar to those given previously except that the superscripts TT'JJ'
are absent and the expressions for &\ and QK are modified. Tt is assumed

that the lncident particle D does not interact with a single particle N bdbut
instead interacts with a collective degree of freedom of the target nucleus

I=F. Let
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and use the relation
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It follows that gk = v%. In this calculation

ag [2 + exp (ﬂ) + exp (M)]
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The amplitude for inelastic scattering by collective excitation then differs
from that for single-particle excitation only in that Q%I'JJX is replaced by

ZJI + 1
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In the previous discussion the contribution to inelastic scattering due to
purely nuclear interactions was considered. There willl also be a contribution
arising from the Coulomb interaction. This may be introduced into the expres-
sions by adding to the kernel g; a second term of the form
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and p(T) is the charge density operator. For single-particle excitation,

—~ 2
SR A R T E A -
Pr1 = Fs%F © P1° Ineg

For collective excltation,
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Finally, the program allows the nuclear collective interaction kernel to be
given an alternative form to that of Vo namely,

[=<]

3
M
_ 1 2 (1)
gx(r) = -4nV, (ﬁ5> dry rlj%(iar<)hx (iar>)
0
3
3
R 4R
x 8 S
a
S M M
-M—I-r-RS Rs-—;r
C Mc
2 + exp + exp

The cross section for lnelastic scattering is
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for single-particle excitation and
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for collective excitation. The reduced mass of A and B is MAB' The DRC
calculates the amplitude
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and the cross sectilon
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The functions g and Op used are normalized so that
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Besides the DWBA amplitude and cross section described previously, the DRC
calculates a second set of such quantitles according to the cutoff DWBA. The
cutoff DWBA differs from the DWBA only in that the kernel g%u(r) is set equal
to zero for r smaller than a cutoff radius RC‘

For knock-out reactions, I = C+ P and F =C + D, where C 1s the core.

The interation VPF - VPF = V?D + VPC - VPF 1s approximated by

VfD = (4ﬂVo/m3)8C?P - ?D). The transition amplitude then becomes
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The cross section is
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The DRC caleculates the amplitude
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For projectile stripping reactions D=N+P and F =TI + N, where N is

the exchanged particle. The interaction VPF - VPF VPN + VPI VPF is approx-

imated by Vpy. The interaction VPN is taken to have zero range so that
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where Ep 1is the binding energy of D. The transition amplitude then becomes
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The DRC calculates the amplitude
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and the cross section
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For target stripping reactions I 1dentifles the incident projectile and
D=P+ N identifies the target nucleus. The residual nucleus is F =I + N
and the outcoming particle is P. The expressions for the transition amplitude
and cross section are then identipal to those for projectile stripping except
that Kp must be replaced by -Kg. Thus,

Arp(KpKp) = App(-Kpy Kp)

0(9)t = og(x - e)p

where the subscripts t and p denote target and projectile stripping, respec-
tively. The DRC uses these relations to calculate the transition amplitude

B%u and differential cross section o(8) for target stripping from the corre-
sponding quantities for projectile stripping.

The DRC consists of a set of subprograms that run sequentially. These pro-
grams make use of a group of subroutines and function subprograms. For conven-
ience in compilation, the subprograms are arranged into four subsets called
links.

LIST OF SUBPROGRAMS
Main Program
Link 1

0] Input data reduction

128 Surface-interaction form factor

IZA  Bound-state wave functions

IZB Bound-states multiplication

IZC Bound-states kernel
Iink 2

2VD Kinetic energy for incident channel

2VP Kinetic energy for outgoing channel



2XD

2XP
Link 3

3B

3A

Link 4

TA

7B

57

AJH
ONE Z
TWO PD
TWO AB
THREE A
THREE B

FOUR

GAMMA
FCTRL

PIOT

PIOTMY
10

Radial wave function for incident channel

Radial wave function for outgoing channel

Coulomb scattering amplitudes
Nuclear scattering amplitudes
Radial integrals

Coefficients of Legendre polynomial expansion

Convergence test and total cross section
Direct~reaction amplitudes
Direct-reaction cross sections

Elastic scattering cross sections

Subroutines and Function Subprograms
Surface form factor |
Spherical Bessel or Hankel function
Bound~-state wave function
Kinetic energy (Saxon well + Coulomb well)
Radial wave function
Nuclear scattering amplitudes
Coulomb scattering amplitude
Radial integral
Assoclated lLegendre polynomials
Gamma coefficlent
Factorial function
Plot graph

Plot graph II



VBEST
INTRP

Harmonic oscillator potential depth

Interpolation

INPUT DECK

The information to be entered on each card of the input deck and the format
to be used are given by the following list:

(1)
(2)

N

(

B> W

n

)
(4)
(5)
(6)
)

~N »;

(
(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

Information to identify calculation (80H)

IREACH LIL LPAR

ZT
JI

MI

AJl

yAY 7D
JF JD
MF MD
JN MN
L2 N1
Q EB
RC R2
WD RD
XRD XAD
WP RP
XRP XAP
AS VO
RN1 BN1
RNZ BN2
AJza DVN

DELTAO ANO ANZ

ANB
W1

(21-1)

(21-NOT)

XsT THETAOC

XsT THETAO

NOLD

DELTA

zp
JP

NOT

NOT

IWRTZ
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1p4®
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E
(1P4E

(3E 15.8, I 10)

—~
(o2}
H

O i
oo o
@

)]
o o
— N e N

15.
15.8)
15.8)
15.8)
15.8)
15.8)
15.8)
15.8)
15.8)
15.8)
15.8)

15.8)

15.8)
15.8)
15.8)

N

(3E 15.8, T 10)

11



(22)

(23)

Information to identify plot (12 A8)

NE THETE DELTE (I5, 2E 15.8)

If LPAR # O or if ANS £ 0, card 23 should be left out.

The quantities Jjust listed are to be interpreted as follows:

CN =
IREA IR
IR =1
IR =2
=3
= 4
LIL = L
LI=O
=1
= 2
=3
ILPAR = LP
Ip = 0
=1
NOID = N
ND =1
=2
=3
IPPAR = IP
IP =0
>
<

12

determines type of reaction to be calculated
inelastic scattering

knock-out

projectile stripping

target stripping

determines form of interaction

surface interaction

Yukawa well interaction

zero-range interactilon

Yukawa well-surface interaction

allows continuum wave function part of calculation to be omitted
calculation proceeds in usual way

program does not calculate continuum radial wave functions but
uses instead those written on tape by a previous calculation

determines type of potential well used to calculate bound-state
wave functions

Saxon well

truncated harmonic oscillator well
harmonic oscillator well

allows transition amplitudes to be read out

transition amplitudes are printed out
transition amplitudes are printed out and punched out on cards

transition amplitudes are not read out



if Tyz # O bound-state wave functions and potential form fac-
tors are printed out

charge of target nuc
charge of residual nucleus
charge of Incident particle
charge of outgoing particle
spin of target nucleus

spin of residusl nucleus
spin of incident partlcle
spin of outgolng particle
mass of target nucleus

mass of residual particle

mags of incldent particle

mass of outgoing particle

g = 4, then I didentifiles incildent particle and D d1dentifies target
nucleus instead of what is shown previously.

IWRTZ = L.,
21 = Zp
ZF = Zp
ZD = Zp
ZP = Zp
JI = J¢
JF = Jp
JD = Jp
JP = Jp
MI = Mp
MF = Mp
MD = Mp
MP = Mp
If
ZN = Zy
JN = Jy
=MN
YS = Yg
Il =1
12 = ¢
NL =1
N2 = n'
™ = 5
Q=Q

charge of bound particle

spin of bound particle

mass of bound particle

determines verticle scale of graphical output

orbital angular momentum of particle bound in target nucleus
orbltal angular momentum of particle bound in residual nucleus

radlal quantum number of particle in target nucleus, number of
nodes of radial wave function plus one

radial quantum number of partiecle in residual nucleus
laboratory energy of incident particle

Q-value of reaction, positive for exothermic reactions

13



EB = Ep
QB = Qg
LAM = A
RC = Rg
RZ2 = Rg
M=m

VD = VD
WD = Wp
AD=8.D
XD = Xp
XRD = XRD
XAD = Xap
YI':YL
VP=VP
WP = W?
RP = Rp
A_P=aP
XP = Xp
XRP = XRP
XAP = Xap

14

binding energy of target nucleus or incident particle, separation
energy

binding energy of residual nucleus minus Eg
angular momenum transfer
cutoff radius

interval doubling radius; Ry should be set so that it is gbout
equal to Ry1 and Rye

Saxon well flattening parameter

depth of real part of optical potential for incident channel,
negative channel, negative for attractive potential

depth of imaginary part of optlical potential for incident channel,
negative for absorptive potential

radius of Saxon well for incident channel
diffuseness of optical potential for incident channel

strength of surface absorption potential for incident channel,
negative for absorptive potential

radius of surface absorption potential for incident channel
diffuseness of surface absorption potential for Incident channel

determines whether cross sectlon (Yi = 0) or logarithm of the
cross section (YL # 0) appears in graphical output

depth of real part of optical potential for outgoing channel,
negative for attractive potential

depth of imaglnary part of optical potential for outgoing channel,
negative for absorptive potential

radius of Saxon well for outgolng channel
diffuseness of optical potential for outgoing channel

strength of surface absorption potential for outgolng channel,
negative for absorptive potential

radius of surface absorption potential for outgoing channel

diffuseness of surface absorption potential for outgoing channel



BS = BS
RS = RS
AS = as
VO = VO
ATPHA = q
VNI = V.

NI

RN1 = RNl
BNl =

N BNl
C3l = CSl
VN2 = VN2
RNZ = Ry
BN2 = BNZ
C32 = CSz
AT2 = 3,
DVN = Dyy
AN3 = Nz
DEITAO = 80
ANO = N
ANZ = W,
ANS = N5
AN6 = Ng
AN8 = N8

strength of Coulomb interaction
radius of surface-~interaction form factor
diffuseness of surface-interaction form factor

strength of inelastic scattering interaction, negative for
attractlve interaction

range of inelastic scattering interaction

depth estimate of potential well for initial bound state, posi-
tive for attractive potential

radius of potential well for initial bound state

shape parameter for potential well for initial bound state
spin-orbit parameter for potential well for initial bound state
depth estimate of potential well for final bound state

radius of potential well for final bound state

shape parameter for potential well for final bound state
spin-orbit parameter for potential well for final bound state
total angular momentum of initial bound particle

total angular momentum of final bound particle

increment in potential depth used in search for correct bound-
state potential well depth

convergence criterion used in well-depth search
mesh interval size
determines transition point in radial wave-function calculation

convergence criterion for asymptotic series used 1in radisl wave-
function calculation

elastic cross sections will not be read out if Ng #£0

convergence criterion for power series used in radial wave-
funection calculation

criterion for setting upper limit for radial integrals

15



AN9 = Ng criterion for setting Saxon form factor equal to zero

AN10O = Nio maximum number of terms to be allowed 1n asymptotic series
Wl =W criterion for determining number of partial waves to be distorted
in incident channel
W2 = Wé criterion for determining number of partial waves to be distorted
in outgoing channel
W3 = Wz allows bound-state kernel part of calculation to be omitted
Wz = 0 calculation proceeds in usual way

Wz % 0 calculation of bound-state kernel in link 1 is omitted, kernel is
placed 1in memory by previous calculation used

W4 = W; criterion for determining total number of partial waves used
XST = Omx experimental differential cross section
THETAO = 6 DEITA = A NOT = N

If A = 0, there should be NT cards bearing numbers ldentified by Opxs e, A,
and Np. The quantities A and Np need be present only on the first of this

group of cards. The quantities opy and 6 will be different on each card.

They will represent the observed differential cross section and the center of
mass angle at which it is observed. The program will calculate a theoretical
differential cross section at each of these angles. If A‘# O, there should be
only cne card bearing numbers identifled by Oy 8, A, and NT. In this case

oy 1s lgnored, and the program calculates the direct-reaction differential
cross sectlon at the center of mass angles 6, § + A 8 + 2A, . . .,9+—(NT-1)A:

NE = Ny  THETE = 65 DELTE = Ag

The elastic differentlal cross sections will be calculated at the center of mass
angles Op On + O Op + BAy .« . ., 6+ (NE - l)AE. There should be no more
than 100 points in any of these angulsr distributions. The input information
should be in the following units:

angle degrees

angular momentum units of #

charge units of charge of the positron
differential cross section millibarns per steradian

energy million electron volts (Mev)

16



length fermisg

mass gtomic mass units

DESCRIPTION OF SUBPROGRAMS
Program O -~ Input Data Reduction

Program O reads part of the input information and prepares it for use in
subsequent parts of the calculation.

The flrst card of the input deck contains whatever information it is de-
sired to use to identify the calculation. The contents of the first 20 input
cards are printed out to help identify the output. The contents of input cards
2 to 19 appear under the heading INPUT TO PART ZERO. Then under the heading
OUTPUT FROM PART ZERO the following numbers are printed out:

ED=ED
1/2

p = (M)

AETAD = 1 = ZDZIMIDc/KD&h

MID = My, = M/ (Mg + M)

EP = B, = [ME) + (M + M))Rl/M

1/2

KP = Kp = (ZMEPEP/MPﬁZ)
REIAP =y = 2yl

= MM/ (M + 1)

EN1 = ENl = EB

KD

3
v}
)

. 1/2
KNL = Ko = (ZMNCEB/h ) Ip = 1,2

=0 IR

It

N
)

S

ARTANT = 5

"

Zy(Zq = Zy)Myce/ Ky, g =12

=0 I

Il

W
a

N

17



ML = My = My(Mp - My)/Mp = My

0 - i, = (/)
ABTANZ = 1, = zN(.zI - zN)Mzc/KNza‘,ﬁ
= Zp(Zy - Zy)Mpe/Ky 0
= ZyZ e /Ky 80
M2 = My = My (M - M)/ =t
= (g - M) /M R
= M/ Mg Tr
AEPS = € = 60/(K_P+ Kp)
AEPN = € = eMI/(MI - M) Ip
- et/ Ty
AEPD = € = € I, =12
= eM/M; I, = 3,4
AFPP = €, = € I, = 1,34
= eMI/MF I, =2
RO = Ry ™ By, = 2ep + N/ (K + Kypp)
~ Ry - 2ey + Ngag
RC = Ry = R
R2 = R, ® R,

ATPE =P =1+ ™
18
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=R = - -m
RDB = RD.— RD ap In(l + 2e™®)
RPB = R_ = - -m
_ RP RP ap In(1l + 2e™M)
ROD = pD = R_D - maD
ROP = =R_ =~
Pp = %p = My

SD = 5 = Max[Sél),Séz)]

(1) _ =
SR Ry + aD(O.69315 + 2.302585 Ng)

(2) _
87/ = XR + XaD(O.69315 + 2,302585 N9)
- - (1) «(2)
SP=8S_ = Max[SP PRoh) ]

P

l) —_—
S( =R_ + 0.69315 + 2.30258
o aP( 5 Ng)

2]
—
[AY]
A
Il

xR, + XaP(O.69315 + 2.302585 Ng)
COD = Cypy = {énnD/[exp(ZnnD) - 11}1/2

COP = Cop = {ZnnP/[exP(ZnnP) - 1]}1/2

<
H
it
<3
1

;= lan(an + 1)]1/2/KPKD

1.504n(2A + 1)]1/2/KPKD

(a)%/B(an + 1)1/2 vomi/KPKDa5M2

]

(a)%/ 220 + 1)Y/2 v 2y JK_K_ oM
OTF PD C

~[32n(2\ + 1)E%/2/KPKD]I/2(M§/M§)
x [87 (v + M?)/ZMNM?]3/4

i

19



- m = -1 -
AETA—n-nO(27\+1) Ig=1
= no(ZJP+ 1)/(2JD + 1) =2
= n.(2\ + 1)'1(2J + 1)'l = 3,4
o N =3
o, -2 -1 -1
= 2 K X
g 10 MIDMFP( he) oK (2JF + 1)(2JI + 1)
MC = My = My - My Ip =1
= Yp - 1 =7
= Ve - My Ty =3
NRZ = n, = Rz/eN
NRO = = (R + (R - R 2¢
ny = (Ryfey) + Ry - R 2ey
NRC = n, = (RC/GN) + (RC - R, + |Ry - Rzl)/4eN
TAM = A
IDD = Ly = KRy + W
IDP = L, = KRy + W,
ICD = Ly = Lyp + A
ICP = Lgp = MAX(Lyy, Lpp, KpRo + W)
where

K2 = 41.826134

&1 = 7.2973254x107°

I

¢/ = 4.7195563

Limitations inherent in the program impose certain restrictions on some of
these numbers. It 1s necessary that Do be less than 500. If Ny is greater

than 499, NO TOO LARGE is printed out, ny 1s set equal to 499, and the calcula-

tion continues. It is also necessary that IDD’ LDP’ LCD’ and LCP each be less
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than 50 and A be less than 6. Also, it is necessary that LDD < LCD and
LD < Lape
P Cp
Progrsm IZ8 =~ Surface-Interaction Form Factor

It IT % 0,3, program IZS is skipped and control is shifted to program IZA.
Program IZS calls subroutine SZ to calculate the function

-1 r - Rg Ry - )|
ZDEL(n) = R.V.a 2 + exp |——=) + exp \ 22—
S 07S a a,
S S
where

r = neN n < n,

]

R, + (n - n2)2eN n>n

which will be used as the bound-state kernel in program 4. After ZDEL is calcu-
lated in this manner, control is shifted to program 2VD.

The description of IZS applles only if LI # 3 and BS = 0, If LI =0

and Bg # 0, the program calculates ZDEL as Just described and in addition cal-
culates

and shifts control to the middle of program IZB. If LI = 3, ZDEL is not calcu-

lated, ZC 1s calculated as described, and control is shifted to the middle of
program IZB. When Ly = O, IZB and IZC will add a Coulomb term to the kernel

ZDEL. When Ly = 3, IZB and TZC will calculate both the nuclear and the Coulomb
contributlons to the kernel.

Program IZA -~ Bound-State Wave Functions

Program IZA uses subroutine ONE Z to calculate the radial wave functions of
the bound particles. If Ly = 1, the bound-state wave functlions are calculated

with a mesh size of % €y 1instead of €y S0 that they may be folded together

with the spherical Bessel functiong in program IZC. If IR =1 or 2, the pro-
g?am calculates two bound-state wave functions: AZ(n) with parameters i; Ny
n, and K, and 7ZB(n) with parameters 1°', y? n', and Kype If I, =3

or 4, the program only calculates ZB(n).
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Program IZB - Bound-State Multiplication

If I=3 or 4 and Ly # 0,3, the function ZDEL(n) is set egual to
ZB(n); if Iz =1 or 2 and Ly = 2, then ZDEL(n) is set equal to ZA(n) « ZB(n);
if Iz =1 and Ly =1, then Z2C = Z2A * ZB; and if Ip =1 and Ly = 3, then
ZC 1s provided by program IZS. These ZC's are used to calculate the nuclear
kernel. If Iz = 1l and Bg # O, then a ZC will be provided for the calcula-
tion of the Coulomb kernel for all four values of LI'

When the nuclear kernel is being calculated, IZB computes

7M1 (n) = ZC(n)j%(iar) i zggn x%
- (1) 1 even A
z82(n) = 20(n)ma ™ (dow) 7 547

where
r =ne + 0.5(n = n +-|n -n,|)e
2 2
Here J; 1s the spherical Bessel function and hil) is the spherical Hankel

function of the first kind. These functions are provided by subroutine AJH.
When the Coulomb kernel is being calculated, IZB computes

ZA1(n) = ZC(n)r?

-A-1

7AZ2(n) = zC(n)r

It

Program IZC - Bound-State Kernel

The bound-state kernel is made up of a nuclear part and a Coulomb part.
The nuclear part is calculated to be

M 3 o r
BN(n) = -47V, (ﬁ) I (dar) / dry rEZAZ(nl) + h7(\l)(j_u,r) / dry r?_ZAl(nl)
r 0

where

r =ne + 0.5(n - n, + [n - nzl)e
r, =mn.€ + 0.5(n; -~ n, + ]nl - nzl)e

The Coulomb part 1s calculated to be
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3
B M _-A-
Bc(n) = 5 (_I.> r7\ drlr§ZA2(nl) + T A-1 dry r?_ZA_'L(nl)

. '~

Lv JO

RO
- 8?\Of(r) / dry rEZAl(nl)
A .

where f(r) is as defined in the INTRODUCTION. When LI = 0, BN is provided by
IZS, and when Ly = 2, By 1s provided by IZB. Otherwise By 1s calculated as
shown previously. The quantity By is always calculated as shown previously.
Finally, ZDEL = By + Bp 1s the total bound-state kernel. If Bg ;4 0, the pro-
gram points out the multipole moment

"Fo

3
M M

4t I 2 A I A

Zh+ 1 (M ) 4rT1Ppr (M— rl) 1
T c

where D;I 1s as defined in the INTRODUCTION.

If LP = 1, control 1s transferred to program 4, whlle if LP = 0, the ki-

netic energy in the incident channel is evaluated by using subroutine TWO FPD.
The quantities evaluated are

e m
V(n) = = ﬁ—2 X (real part of kinetic energy)
e? Mpp
W(n) = 6 52 X (imaginary part of kinetic energy)
&2 Mpp
vC(n) = = 5 X (kinetic energy for Coulomb scattering)
ko)
N
€ = & n, >n
= ZeD n > ny



Program 2VP -~ Kinetlic Energy in Outgolng Channel

The kinetic energy in the outgoing channel is evaluated by using subroutine
TWO PD. The quantities evaluated are

22 Mpp

VA(n) = = 5 X (real part of kinetic energy)
gl

€2 Mpp
WA(n) = - %E— X (imaginary part of kinetic energy)

8% Mpp .
VCA(n) = = 5 X (kinetic energy for Coulomb scattering)

o)
= ZGP I’l2 <n

Program 2XD - Radial Wave Function for the Incident Channel
By means of subroutine TWO AB the radial wave functlons for the incidént

channel are calculated and are written on tape 4. These wave functions are
represented here by

ZD(Lyn) = ¥D(L,n) + 1YD(I,n) = X%(r)

where

r =ne. + 0.5(n - n

D + [n - nzl)eD

2
The radial wave functions for L < Ly, are calculated by using V(n) + iW(n)

for the kinetic energy, while for Iy >L> Ipp the kinetic energy v¢(n) is
used. -7

Program 2XP - Radlal Wave Function for Outgolng Channel

By means of subroutine TWO AB the radial wave functions for the outgoing
channel are calculated and are written on tape 3. These wave functions are
represented here by

7P(L,n) = XP(Ln) + 1¥2(L,n) = X ()
where
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r = nep + 0.5(n - ny + |n - nzl)eP

The radlal wave functions for L < L., are calculated by using VA(n) + iwA(n)

for the kinetic energy, while for L., > L > L, the kinetic energy VCA(n) is

used. CE

Program 3B - Coulomb Scattering Amplitudes

Subroutine THREE B 1s used to calculate the Coulomb phase shifts D(L) for

the incident channel and the Coulomb phase shifts UP(L) for the outgoing chan-
nel.

Program 3A - Nuclear Scattering Amplitudes

Subroutine THREE A 1s used to calculate the scattering amplitudes and nor-
malization factors for the radial wave functlons. For a glven radial wave func-
tion X%(A = D,P), the normalization factor o and the scattering amplitude

L
AA are determined by the requlrement that

L
K.R *
- _ AO A
R, = 5 [yL(KA’ Ro) + Apyp(Kp Ro)]

where yL(K,r) is the Coulomb analog of the spherical Hankel function of the
first kind. It is convenient to write

= A%L + exp [iZcA(Lﬂ

where ANL is called the nuclear scattering amplitude and exp[iZcA(L)] is
called the Coulomb scattering amplitude. For I > LDA’ ANL is set equal to

zero and CA 1s set equal to exp[icA(L)] To verify the valldity of this step,
the program prints out the real and the imaginary parts of AN Iy identified
D-

by DISTORTION CHECK D and the real and the imaginary parts of AP identi-
N Lpp-1
field by DISTORTION CHECK P. If Aﬁ I is not very small compared with 1,
4 -1
DA

then LDA should be increased by increasing Wi or Wé.

Program 3A also calculates and prints out reduced widths for r = Ry and
r = Re. The reduced wldth is taken to be

reduced width = hz[ZDEL(n)]Z/ZMNCr
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where

r =ne_+ 0.5(n - n

N o+ In - nzl)eN

Program 4 - Radial Integrals

By means of subroutine FOUR the following radial integrals are evaluated:

R,
g0 =/ dr z(r')x];(r")xf(rm)

L, 1
0
Ro
C Dyt \yP
s = ar Z(r' )X xP (g
°, / r 2 PO E ()
R'

where

r =ne + 0.5(n - n, + |n - hzl)e

2
Z(r') = ZDEL(n)

D/

Xz(r ) = ZD(1,n)

P e —_
XL(r ) = 2P(L,n)

' = = 1,2
Rc MCRC/MI IR ?
' = M_R /M I = 3,4
Rc T c/ F R ’

Program 5 - Coefficients of Legendre Polynomial Expansion

The coeffilcients of the Legendre polynomial expansion are calculated as

N P D N (I+N-1)/2 B
B - VICLZCZS%,II‘LZ(-l) A=0,C

1
The quantities I%ﬁ are provided by subroutine GAMMA.

Program 6 - Convergence Test and Total Cross Sectlon

First, this program calculates and prints out the quantities
26



G G
CP CP

—_—2t . and

LCP LCP

0 c
PIE DI
0 0

preceded by the words CONVERGENCE TEST. In the previous expressions,
A

= O
H Q

2
A 4w s ' - -
GL——-Z—LTE: IBIEI (L+ IH,)'/(L IIJ')-' A=0,C

p==A

Next, the program prints out the words TOTAL CROSS SECTION followed by

Lop . Lep
R =0 S=T‘|ZGL R = Rg S=nZG€
0 0

The quantlties S are total direct-reaction cross sections according to the
DWBA and the cutoff DWBA, respectively.

The convergence test is an indication of the error resulting from truncat-
ing the angular momentum expansion after LCP + 1 terms. If the convergence

test is not very small compared with 1, then LC should be increased by in-

creasing Wé. P

Program 7A - Direct-Reaction Amplitudes

Program 7A calculates the dlrect-reaction amplitudes as a function of
center of mass angle. The amplitudes are given by

Lep
B?A\“(G) = Z B;“*APFIL,(cos 8) A =0,C
I~0

The associated Legendre polynomials Fi are provided by subroutine IP. If

IP = 0, the amplitudes are printed out under the heading DIRECT-REACTION AMPLI-

TUDES.

The real and the imaginary parts are identified as follows:
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B%“ B1P + iBl1M

I

i

Béu B2P + 1B2M

ir IP > 0 the transition amplitudes are punched on cards as well as being

printed out, and if IP < 0 the transition amplitudes are not read out at all.

Program 7B - Direct-Reaction Cross Section
The direct~reaction differential cross sectlon is taken to be
_ AL 2 -
0,(8) = n |B (o) ] A=0,C
H==A

Program 7B calculates o, (9) and UC(Q). The maximums of these two cross sec-
tions are determined and are printed out in the following statements:

NORMALIZATION FOR R = 0 IS
max[oo(e)] MB. PER STER.

NORMALIZATION FOR R = (R,) IS
max[op(6)]  MB. PER STER.

NORMALIZATION FOR EXPT XSTN IS
[max (opy) ] MB. PER STER.

The last statement appears only 1f the experimental cross sections are included
in the input data.

Then the normalized cross section

a,(9) a,(8) gy (8)
max[04(6)] max[ o (6)] max [ opy (6) ]

and the momentum transfer

2 2
+ - e
‘/KP KD ZKPKD cos
are printed out. The three normalized cross sectlons are also displayed on a
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graphical plot.

Program 8 - Elastic Scattering Cross Sections

If Ng # 0 the calculation ends with program 7. The differential cross
section for elastic scattering is calculated for the incident channel and the
outgolng channel by program 8 if NS = 0. The elastic cross section for the in-

cldent channel 1s
<\ , N
(ZiKD)—l Z (é% - %)PL(cos 8)]
L

—

- BD'+;21;(21K)-;A£LPL(COS 6)

L

10
o

op(€)

Il

ja

The Coulomb elastic cross section for the incident channel is

2 1204 (L)
opa(6) = |BD| = (21KD)’l (2L + 1)e °D P; (cos 6)

L

The Legendre polynomial PL is provided by subroutine LP. The gquantity 8P is

the well known Coulomb scattering amplitude

2 6
120D(o) -iny In sin =

D T]D

2 gin® 8
3

The program prints out cD(e), cDC(e), and cD(e)/cDC(e). In a similar way the
same quantities for the outgoing channel are calculated and are printed out.

The calculation ends at this point.
Subroutine SZ - Surface Form Factor

Subroutine S7 calculates the function

-1 -1
AAT(n) = VORS[aS(Z + X+ X)]

where
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>
n

expl (r - RS)/aS]

ne + 0.5(n - n_ + |n - nzl)e

H
I

2
Subroutine AJH - Spherical Bessel or Hankel Function
Subroutine AJH calculates the spherical Bessel functions of imaginary argu-

ment Jp(ix) or the spherical Hankel functions of the first kind of imaginary
argument hL(ix). The first step of the calculation is the evaluation of

or

ho(ix) = -e_x(x)-1

ih (1x) = -(1 + x)eX(x2)

Then the higher order functions are generated by the recursion relation

1. (eoy _ 20 =1 ,1-1 1-2
ifzz(lx) === i zz_l(ix) + i ZZ-Z(ix)

AJH is also called upon to calculate x' ana x"'°T,

Subroutine ONE Z - Bound-State Wave Function

Subroutine ONE Z calculates bound-state solutions of the Schroedinger equa-
tion for a particle moving in a potential well of the form V(r) = Vc(r) - VNF(r).
The term Vc(r) is the Coulomb potential due to a uniform sphere of charge:

2
é.-.];i r < Ry
Z - e
VC(r) _ N IR N
' iy
_— r > R
T N
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For the form factor F(r) there are the following three choices:

F(r) = {1 " exp[(r - RN)/BN]}‘l

r - <§L>Z r < Ry

N

0 r > RN

1l
—
1
N
i
N—
av

There 1s also g spiln-orbit term available when N = 1.
D
has the form

1,2-. 314 ]
-l=ANo " 1 == F(r)]C
[2 n r dr (x) S
where A, 1s the pion Compton wavelength.

The Schroedinger equation to be solved is

A

ND =1
Nb =2
ND =3

This addition to

2 2M
a® _ “TIN CL(L o+ 1)
{;_75.___7?_ [EB + V(r)] ___;%__{}XL =0

where L =1 or 1'. Near the origin, Xg 1s represented by the series

<N _ r1¢1_:E: ¢ 0
L n

n=0
where
¢, = [(2L+1)(20 - 1)(2L - 3). . . 3 - 1]-1
C, = -ACO/(4L + 8)
¢, = -(BC,_, + AC,_»)/n(n + 2L + 1)
P - R s L\
w2 N 7B Ry

F(r)
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5 - S -2

M 2M_ V.
D
3 ﬁ?BE
oy N
Near r = Rg, Xg 1s represented by e . The solution is started from the

values of XE glven by the power serles near the origin, and the values of Xg

at larger values of r are generated by the approximate recurrence relation

[12 - 10 ¢(x) 1] (r) = a(x - B (x - B)
a(r + 8)

N
XL(r +8) =

In this way Xg(r) is evaluated in the interval O <r <R, where R, is R
or RNZ' The symbol Ry 1s called the matching radius. The same recurrence

relation is used to evaluate Xg(r) in the interval RM <r< RO by using

=K
e ¥ %o give starting values at r = Ry. The ratio of the wave functions at

the two points Ry and Ry + & 1s compared for the solution calculated for
r < Ry (inside) and for r > Ry (outside). If the difference is not less than

=N
10 3, the value of VN is changed and the calculatlon of wave function is re-
peated In the region where the potential is not negligible.

The first value of Vi used by the program is provided by the input data.
If the input value of VN ls zero, an estimste of VN will be provided by func-

tlon subprogram VBEST. The value provided by VBEST will be the correct value of
VN if Np = 3.

The number of nodes in the inside wave function is counted, and, 1f it does
not match the bound-state radial quantum number, Vi 1s incremented by 2 DVN
until the correct number of nodes is obtained. If the inside and the outside
wave-function ratios fall to match, Vy 1s successively incremented until the

difference in the inside and the outside wave-function ratio changes sign. Then
subroutine INTRP is used to calculate a new value of Vy by interpolation from

the previous two values of VN. The value of Xg is agaln calculated out from
=N

r = 0 and in from a radius beyond which the potential is less than 10 9 of its
value at r = (for N. =2 or 3 only the inside wave-function calculation is

repeated), and the inside and outside wave-function ratios are sgain compared at

r = RM. The process i1s repeated until the difference of the wave-function ratios
=N

falls below 10 °.

When a function Xg(r) is produced that has the correct number of nodes and
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is smooth at r = Ry, the integral

L)

dr [Xg(rﬂ ;

(=}
i

0

is evaluated. The bound~state wave function is then taken to be
Z(r) = I'l/zxg(r)r'l

The calculated potential depths VNl and VNZ are printed out. If IWZ % 0,
the initisl and the final nuclear form factors, Fl and FZ’ and the initial and

final wave functions, Xl and Xz, will also be printed out.

Subroutine TWO PD - Kinetic Energy

Subroutine TWO PD calculates the kinetic energy to be used in the calcula-~
tion of the continuum radial wawve functions carried out by subroutine TWO AB.
The quantities evaluated for the incident channel calculation are

~
V(n) = = (K% - E ?)

Win) =0 Sy <r <R

A2 21’]
€ 2 D
VC<H)=1—2(KD' r )J

\
A2 2nLK zM
V(n) = < I:K% i e va(r)]

it

12 r ﬁZ

22 2M_, _
- I3 —1;2— [wa(r) + XDg(r)] > Rp <r < 8p

A2 2T] K
€ 2 D™D
vC(n) = 73 (KD -— )

w(n)

]
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Ve - & %-nﬁp(-.g--iz)-ﬂd% (e
D Ry 1
A2 ZM
w(n)=-§-z-—%%[wa(r)+ng(r)] ro<r<‘]§D
VC(n)=§—Z(K2-2n—]IJ_K—2) J
where
r = ne, + 0.5(n - n, + |n - nzl)eD
€ = e n < ngy
= Zep n > no
r - Rp -1
f(r)=P[l+eJ@<—;]5—->] r > op
=P . r > oD
Pl on (52 (%)
g(r) =P iza; 2 + exp ——3E§;_— + exp (_-35%;_;)

The corresponding expressions for the outgoing channel result when the subscripts
I and D that appear in the previous equations are replaced by F and P, and
when V, W, and VC are replaced by VA, WA, and VCA.

Subroutine TWO AB - Radlal Wave Functilon
Sybroutine TWO AB calculates the radial wave functions for the incident and

the outgoing channels. The expressions appropriate to the incident channel will
be given. The radlal wave functions are solutions to

2
d 12 L(L + 1) |D
S+ == (V+ IW) - 2 L X] =0
[2 Az( ) 2 ]

dr € r
For L > LDD’ these solutions are approximated by the Coulomb radial wave func-
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tions that are solutlons to

2
4+ 212y ML+1) 2o
drz a2 Pl
The quantities V, W, and VC are the kinetic energies provided by program 2VD.
Also,
€ = € n < n,

s
il

nen + 0.5(n - n, + |n - ns| )ep

In the interval 0O < r < NOLeD, a power series 1s used to represent XD

D m1§ :
X, = Cpp® Po

a=0
where
L2 + n2
Crp = | ARl C1_1p
L{2L + 1)
For L < LDD’
cpo = 1 cpl =0
-1
= - 2L + 1 A + A
® [a(a + + 1)17( 0Py chd.—4)
2M 2M
_ _ ==1 _ “'ID ; _ 77D
7\0 = 1% 3K Ry —= (vD + :LWD)f(r) —= i
el Ea
_ =3
Ay = KpipRy
For L > L.,
¢, =1 ¢, = 1K (L+1)"%
0 1 DD
= -[ 2L + 1)17 (x5 2
P, = ala + 2L + KDCPCL—Z - KDnD(pG,-l

o/
r

Xpe(r)

L:
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Only the first three terms of the power series are used, except at the last two
points of the interval where N terms are taken. For L < LDD’ N is the small-
est integer for which

N
"NG > r( |ReCPNI + |IchNI )
N N a
Re }° Pt [+ Im D @yr
0 0

For L 2> Ipp, N 1s the smallest integer for which

10

_ N N-1
Ny rio ]+ 2o |

6
> o

10 >
0

Using the two accurate values of XE at r = NOLGD the program proceeds
D

to use the following scheme to calculate subsequent values of XL:

[12 - 10 q(r)]X];(r) - q(r - S)Xg(r - 8)

D
X (r +8) =
L( ) q(r + 9)
where
2 2
q(r) =1 - 8- LI+ 1) 8%y sy
12 r 32

This scheme 1s based on the Taylor's series expansion of Xg at r. The lowest
order term neglected to get the previous formula is

-1 d6

560240 q(r + 8)] 5 X2 (r)

This scheme is begun at r = NOLeD rather than at the origin in order to avoid

the point where q(r) vanishes. At this point round-off errors seriously affect
the accuracy of the scheme. For this reason Ny should be greater than 1/3.

The value NO = 1 has been found to serve well. Choosing Nb too large will

impair the accuracy of the power series.

Subroutine THREE B - Coulomb Scattering Amplitudes

Subroutine THREE B calculates the Coulomb phase shifts UA(L), A=0DP.
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The Coulomb phase shift i1s defined by

qA(L) =arg (L + 1 + inA)

For sufficiently high values of 1, Stirling's approximation can be used to eval-
uvate the I'-function. Thus,

sin B

GA(L)z(L.'- O.5)B+nAlna.-nA-m-

+ 8in 38 _sin 58, 8in 7B _ o.00084175 Sin 9B . )
360 o® 1260 o® 1680 o o®

where

= tan"1[n/(L + 1)]

[(L + l)2 + ni]l/z

The previous expression is used to evaluate UA(SO). Then the Coulomb phase
shifts for lower L are generated by the recurrence relation

™
|

3]
i

6 (L -1) =0 (L) - tan™1(n /1)
A A A

Subroutine THREE A - Nuclear Scattering Amplitudes

Subroutine THREE A first calculates yL(Kﬁgr) at

r=R=ne A

5 2€y + (ng - nz)ZGA and at r = Rj
tion yL(KA,r) is the Coulomb analog of the spherical Hankel function of the
first kind. The followlng asymptotic expansion is used to evaluate VAR

(n - ZGAJ where A = D,P. The func-

eie
YL(KA:I') = Ifql—' b,
n=0
where
po=1
o - (:‘LnA -~ L -1+ n)(inA + L + n)pn_l
n n(ZiKAr)
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The serlies i1s terminated after N + 1 +terms, where N 1is the smallest integer
for which

"Nz |Re PNI

>
IRe 2: pnl + lZm 2: pnl

-Nz I szNI

10 > T i
|Re Z pnl + Ilm E Pnl

0 0

10

or N=Ny5. If N = Njg, a statement that the asymptotlc series has failed to
converge 1s printed out.

The normalization factor C‘ﬁ and the scattering amplitude A% are deter-
mined from the equations

*
‘%0 * A‘;\.Yo = -T5
*
of%y + APY) = T
where
Xy = xﬁ(ﬁg) X = Xg(Rg - 2¢y)
K, RA K, (RS ~ 2¢,)
250 A A A A
Yo = 5= v(KpRy) T = 2 ¥y,(Kp Bo - 2€4)
Thus,
* ¥*
A _ Bafo - Yol
L XY -XY
o1~ "170
* *
WA I - YoXy
L~ XY, - XY,

The nuclear scattering amplitude 1s then taken to be

AﬁL = A% - exp[iZoA(L)]
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Subroutine FOUR = Radial Integral

Program 4 multiplies together the bound-state kernel Z and the outgoing
channel radial wave function XP. Subroutine FOUR then multiplies the incident

channel wave function Xlg by the product in to form

F(n) = 2(eyg) X ()X (rp)

where

r. =ne, + 0.5(n - n

M M + n-nzl)eM

2
M=DNPD
The following sum 1s then evalusted:

Sg,z = % F(1) + % [F(1) + 3F(2) + 3F(3) + 2F(4) + 3F(5) + 3F(6)

+ 2F(7) + . . . + 3F(n2 -2) + 3F(n2 - 1) + F(nz)]

+ % elF(ny) + 3F(ng + 1) + 3F(np + 2) + 2F(ng + 3) + . . .
+ 3F(no - 1) + ZF(nO)]

This sum represents the integral

Ry
P D
=~ dr Z X X
SL,Z / T (rN) L(rP) 7'(I‘D)
0]

where

r = ne + 0.5(n - n, + [n - nzl)e

R.=n

o € + (nO - nz)Ze

2

Tt is based on the 3/8's rule

B
f dr F(r) =
A

3[F(a) + 3F(A + 8) + 3F(A + 25)

of

+2F(A+3)+. ..+ 3B ~58)+F(B)I
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Subroutine FOUR uses g similar procedure to evaluate the integral

Rg
c P D
SL,Z =/ ar Z(rN)XL(rP)Xl(rD)
o
C

where

t
RC = nge + O.S(nC - n, + |ng - n2|)e

Subroutine LP - Associlated Legendre Polynomials
The assoclated Iegendre polynomial Pg(x) is genersted from Rg(x) and

Pﬁ+l(x) by the recursion relation

_ (2L - 1)x1°1‘£{_l - (L -1 +1~/1)P“I’Jl_2

P (x
(%) —
The equations used for Pﬁ and Pﬁ+l are
M/2
-M 2
Mx) = (eMm)127 (1 - x°)
M M!

and

PM (x) = (2M + l)xPM(x)

M+l M

Subroutlne GAMMA - The Gamma Coefficient

The gamma coefficilent 1s defined by

m _ (2L + 1)(2\ + 1)
IA 21 + 1

r

(LAOO | LA20) (Lm0 | LAIm) [éf—lfi%i]l/z

mi)!

Substituting explicit expressions for the vector addition coefficients gives
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|m|

LB JONY s )z )
53) )

where

G=%—(L+7\+ 1)

({?):TE‘—&BT

The previous expression is used to evaluate the gamma coefficient, and use is
made of function subprogram FCTRL.

Subroutine PIOT - Plot Graph

Subroutine PIOT uses subroutine PLOTMY to produce a graphiecal print-out of
the calculated dilrect-reactlion cross sections together wlth the experimental

cross section included in the input data. If YL = 0, the cross section will be
plotted, while YL = 1 will cause the logarithm of the cross section to be plot-

ted. Before being plotted, the cross sections are normalized so that the maximum
values are 1. The vertical scale of the plot will be YS/ZO to one line space

if Yi = 1, and it will be YS/lOO if YL = 0. It has been found that YS = 2

is a convenient cholce for most cases. The Information entered on input card 22
is used as a heading to identify the plot.

Function Subprogram FCTRL - Factorial Function

Subprogram FCTRL evalustes the funetion

NN N

172 Ny
FCI'RL(JN,DN,NN,JD,DD,ND,J) = =5 =

ZiZic o o

172 D

where
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Zﬂ = T[T (M) - DT (M) - 2p ] . . . L3y (M) - D]
and
zﬁ = JD(M)[JD(M)_ - D lLg (M) - 20,1 . . . [3,(4) - gD.]

The JN that appears in the argument of FCTRL represents an array of Nﬁ num~
bers: JN(l), JN(Z), « « ., and JN(NN). Similarly, J;, represents an array of

Nb numbers: JD(l), JD(Z), . . ., and JD(Nb)' The numbers Nﬁ and ND must

be no greater than 10. The factorial function subprogram is used by subroutine
GAMMA.

Function Subprogram VBEST - Bound-State Potential Depth

The function subprogram VBEST calculates the exact depth VN of the har-

monic oscillator potential. This calculation 1s based on the following consid-
erations. The Schroedinger equation. for the bound particle is

2 oM s oM
91__2+_ZIN.VN1-<§I'_) -TINEB'L(L—Z” x§=o
dr A N gl r

which can be rewritten to read

2 2272
a® ol +m(2n+L-%)z_§.-L<L;1>>§=o
dr kol ol r
where n = 1,2, . . .. Thus, it can be required that
m = My

The first approximation is given by

_ f(xl)xz - f(xz)x:L
f(xl) - f(xz)

X3

and the second approximation 1s given by

2
« = B* VB® - aac

4 2A

where
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i=1
3
B = :E: Qi(xj + x) i, 3,k cyclic
i1=1
C = ;?; Cixjxk i,3,k eyclic
Ci = f(xi)(xJ - xk) i, 3,k cyeclic

If f(x) were a straight line, A =0, B = 0, and x4 would be indetermi-
nate. For an arbitrary regular function f(x), if an attempt were made to fit a
parabola through three points very near the exact root, the quantities A and B
would be very close to zero. Thus, parabolic interpolation cannot be used after
a certain degree of accuracy has been attained.

1
‘ha)<2n+L--§-)=VN-EB

From the last two equations

Vg = <A+ A2+EB)2

1
5 [ n@
B z

N My

The value of VN is calculated from the previous expression. For Saxon wells
the value Vi = 55 Mev 1s used.

Subroutine INTRP - Interpolation
The subroutine INTRP is degigned to solve for the roots of a function

f(x). Points on the curve f(x) against x are to be computed at intervals by
the calling program until a zero is passed. Suppose the polnts X1s f(xl) and

Xo, f(xz) straddle the zero. This information 18 placed at the disposal of
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INTRP by two successive statements. INTRP then calculates s straight line join-~
ing these points. The zero of the line, denoted by Xz; is taken to be the first
approximation to the root. The calling program then calculates f(xz). Control
is then returned to INTRP, which fits a parsbola to points 1, 2, and 3. The zero
of the parabola nearest xz 1s taken to be the second approximation x4.

Subroutine INTRP computes successive approximations x, to the root of
f(x) by parabolic interpolation umtil the quantity A is 10~4 of its original
value. INTRP then switches back to linear Interpolation. The search for im-
proved approximations continues until the calllng program 1s satisfied with the
accuracy of the result.

Lewls Research Center
National Aeronautics and Space Administration.
Cleveland, Ohlo, November 29, 1963
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